• Login
    View Item 
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    •   Repository Home
    • Staff Publications
    • School of Pure and Applied Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Review of Clay-Based Nanocomposites as Adsorbents for the Removal of Heavy Metals

    Thumbnail
    View/Open
    Full Text (879.2Kb)
    Date
    2022-06-22
    Author
    Kinoti, Ismael Kithinji
    Karanja, Esther Muthoni
    Nthiga, Esther Wanja
    M’thiruaine, Cyprian Muturia
    Marangu, Joseph Mwiti
    Metadata
    Show full item record
    Abstract
    Due to rapid industrialization, urbanization, and surge in modern human activities, water contamination is a major threat to humanity globally. Contaminants ranging from organic compounds, dyes, to inorganic heavy metals have been of major concern in recent years. This necessitates the development of affordable water remediation technologies to improve water quality. There is a growing interest in nanotechnology recently because of its application in eco-friendly, cost-effective, and durable material production. This study presents a review of recent nanocomposite technologies based on clay, applied in the removal of heavy metals from wastewater, and highlights the shortcomings of existing methods. Recently published reports, articles, and papers on clay-based nanocomposites for the removal of heavy metals have been reviewed. Currently, the most common methods utilized in the removal of heavy metals are reverse osmosis, electrodialysis, ion exchange, and activated carbon. These methods, however, suffer major shortcomings such as inefficiency when trace amounts of contaminant are involved, uneconomical costs of operation and maintenance, and production of contaminated sludge. The abundance of clay on the Earth’s surface and the ease of modification to improve adsorption capabilities have made it a viable candidate for the synthesis of nanocomposites. Organoclay nanocomposites such as polyacrylamide-bentonite, polyaniline-montmorillonite, and β-cyclodextrin-bentonite have been synthesized for the selective removal of various heavy metals such as Cu2+, Co2+, among others. Bacterial clay nanocomposites such as E. coli kaolinite nanocomposites have also been successfully synthesized and applied in the removal of heavy metals. Low-cost nanocomposites of clay using biopolymers like chitosan and cellulose are especially in demand due to the cumulative abundance of these materials in the environment. A comparative analysis of different synthetic processes to efficiently remove heavy metal contaminants with clay-based nanocomposite adsorbents is made.
    URI
    http://repository.must.ac.ke/handle/123456789/683
    Collections
    • School of Pure and Applied Sciences [170]

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository
     

     

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    MUST Repository copyright © 2002-2016  MUST Repository
    Contact Us | Send Feedback
    Theme by 
    MUST Repository